Seleccionar página

OSDA – Open Standard for DataCenter Availability (II)

En el artículo anterior dijimos que los estándares de diseño que han imperado durante muchos años ya no dan respuesta a las necesidades de hoy en día, y en este artículo vamos a ver por qué. Así que tras un pequeño parón para cambio de servidor,  volvemos a la carga con el OSDA.

Pero ¿por qué tenemos que redefinir estas cosas? ¿No es reinventar la rueda? Pues no, y no lo es fundamentalmente por dos razones:

  • La primera es que las normas están diseñadas para un modelo IT clásico, es decir On Premise, en el que cada organización es dueña de sus infraestructuras y las explota. Es evidente que en este modelo de funcionamiento el DataCenter es una infraestructura crítica para la organización, sobre todo si hiciéramos una encuesta y nos diéramos cuenta que lo de tener un CDP de respaldo es menos frecuente de lo que pensamos y, en todo caso, más reciente de lo que pensamos. Es decir, hasta ahora ha imperado el paradigma Juan Palomo: la organización es propietaria de sus infraestructuras iT y se encarga de explotarlas, así que esas infraestructuras, al ser críticas, deben ser lo más fiables posible. Si puedo Tier 3, pues Tier 3. Y si el bolsillo me da para TIer 4, pues Tier 4. Y, el que podía, un CPD alternativo, pero esto último en empresas pequeñas y medianas se ha limitado en la mayoría de los casos a hacer copias de seguridad y llevarlas a casa. Puede parecer absurdo, pero puedo hacer una lista con más de 100 organizaciones que están todavía así. Organizaciones públicas y privadas, grandes y medianas empresas, comunidades autónomas, ayuntamientos de más de 100.000 habitantes (una de las peripecias de mi vida fue diseñar el rescate informático de un ayuntamiento al que se le quemó su único CPD), universidades, etc, etc. Las implicaciones son evidentes: como sólo tengo un coche, necesito que sea duro y fiable, así que no me importa que sea costoso y feo. Es el modelo Volvo aplicado a IT: si puedo, me compro un segundo coche por si las moscas. Si me puedo permitir dos Volvos, me compro dos Volvos. Y si el segundo es un Pandita, ni cabrá toda la familia, ni iremos igual de seguros ni llegaremos tan lejos, pero siempre será mejor que nada.
  • La segunda son los Dogmas de Fe que existen en el mundo IT, y el datacenter no sólo no es ajeno a tener dogmas sino que a durante años se ha quemado en la hoguera a los herejes que pensábamos que quizá mereciera la pena echarle una pensada a algunos conceptos, por si hubiera alguna forma diferente para hacer las cosas de una forma más eficiente. Podríamos citar muchos de estos dogmas de fe. Pero, por ejemplo: la electricidad es un servicio que se contrata a una compañía eléctrica, y si quieres que te diseñe un sistema fiable de suministro eléctrico para tu datacenter tendrás dos contratos de suministro con dos compañías diferentes y te tendrán que llegar dos líneas diferentes de dos subestaciones diferentes. Está claro que el que piensa así tiene acciones de las compañías eléctricas. Podríamos seguir con más dogmas sobre electricidad, refrigeración, etc. Por cierto, recuerdo que cuando hace diez años hicimos el CPD de Caléndula y contaba que utilizábamos intercambiadores de calor aire/agua en el CPD mucha gente me miraba con más repelús que a los extraterrestres de Men in Black. Ahora, las soluciones InRow aire/agua están a la orden del día. Muchas de las soluciones que aplicamos entonces y que fueron muy innovadoras ahora están a la orden del día. Eso si, diseñamos armarios capaces de albergar 40kW, y a día de hoy no he visto ningún otro CPD capaz de eso.

Si nos fijamos, ambos puntos encierran una gran contradicción: las Tecnologías de la Información y las Comunicaciones son muy innovadoras, y han sido la tecnología disruptiva que han provocado grandes cambios sociales y económicos en los últimos 50 años. Sin embargo, las TIC son reacias a la innovación. Es más, en el mundo del DataCenter no sólo no se ha fomentado la innovación sino que, en buena medida, se ha penalizado. Si nos fijamos, en las normas existentes no caben energías renovables, autoconsumo, otros modelos de refrigeración, etc. Es evidente que una norma no puede prever qué tecnologías van a aparecer en los próximos años, pero sí puede prever cómo incorporarlas.

Así que este es uno de los objetivos del OSDA: no sólo hay que utilizar la tecnología que hay disponible hoy en día, también es necesario fomentar la innovación e incorporarla al proceso. Y esto empieza por las definiciones de base. La primera es que si yo soy el CTO de mi organización debo diseñar infraestructuras para dar respuesta a las necesidades de disponibilidad de mi organización, y ese diseño debe ser global. Es decir, romper ese paradigma en el que un CPD es una mónada aislada del Universo. Por ejemplo, qué es mejor: ¿un único CPD a prueba de bombas o tener la carga en dos o tres CPD’s low cost en un modelo activo/activo? Como hemos dicho en artículos anteriores, tenemos que tener en cuenta que los Centros de Proceso de Datos existen para ejecutar aplicaciones, así que lo verdaderamente importante es que funcionen estas últimas.

Lo importante es diseñar infraestructuras que den respuesta adecuada a las necesidades. Y dar respuesta adecuada significa, como decíamos al principio, pensar sobre el problema que tenemos que resolver y cuál es la mejor forma de resolverlo, abstrayéndonos de dogmas. Incluso los que hoy en día defienden modelos On Premise -sigue habiendo mucha gente que se aferra a ellos- que sin darse cuenta han ido externalizando el correo amén de otras muchas cosas, así que tienen que asumir que los modelos de Cloud Híbrida están a la orden del día.

En el próximo artículo entraremos en materia del OSDA. Mientras tanto, ya sabéis: si queréis implantar metodologías y métricas en vuestro CPD, contactad conmigo.

 

Distribución de la Carga

Hoy toca hablar de carga en el DataCenter, y para hablar de carga qué mejor que hablar de aviones, barcos y camiones, que ya sabéis que aparecen con una cierta regularidad en el blog.

El parámetro fundamental de los vehículos de transporte, sean terrestres, marítimos o aéreos es la carga máxima. Como es evidente, el transportista querrá que sus vehículos vayan cargados al máximo, pues esta es la forma de optimizarlos. Cuando un avión, barco o camión está parado está metiendo billetes en la destructora de papel: parados no generan ingresos pero generan muchos gastos. Sin embargo, hay una situación peor que tenerlos quietos, que es tenerlos en movimiento con poca carga. Los costes son mucho mayores que estando parados y los ingresos serán bajos.

De todas formas, hay que entender un concepto importante. Cuando un sistema está diseñado para soportar una carga X, es evidente que su rendimiento máximo medido en términos de gasto por unidad de carga se alcanzará a carga máxima. Un DataCenter, es bajo este punto de vista, igual a aviones y barcos: su rendimiento óptimo lo alcanzará a carga máxima. Sin embargo, la gran diferencia entre un DataCenter y los vehículos de transporte es que, mientras que lo normal es que los vehículos de transporte de mercancías trabajen siempre a plena carga, en los datacenters no: casi siempre hay capacidad excedente. Se construye el datacenter pensando en la carga de hoy en día y en la que vendrá en los próximos X años. Es decir, un datacenter normal no sólo tiene capacidad para albergar más servidores, sino que los servidores que tiene en producción también tienen muchos ciclos de CPU excedentes. Salvo en sistemas HPC, donde en teoría deben encontrarse todas las CPU’s al 100%, en datacenters de propósito general es muy normal encontrarse tasas de utilización de CPU < 10% en sistemas poco virtualizados y < 50% en sistemas virtualizados.

Todo esto, obviamente, penaliza el rendimiento del DataCenter. Es la razón, como vimos en el artículo anterior, de que aunque la ingeniería que proyectó el DataCenter hizo unas predicciones de PUE, una vez en marcha las mediciones reales sean peores. Pero en esto no podemos hacer nada: la carga es la que es actualmente y la única opción es gestionarla de la mejor forma posible. Así que veamos cómo lo hacen en aviones, barcos y camiones.

En el mundo del transporte hay muchos roles. Uno es el del financiero que quiere hacer las cosas al menor coste posible. Otro es el del piloto, camionero o capitán del barco que, además de su sueldo, se juega su cuello. Lo sé por experiencia propia: si te pones a los mandos de un avión quieres aterrizar entero, porque si el avión aterriza “en piezas”, su contenido también,  y en este sentido el piloto también es “contenido”. Si un vehículo de transporte está a media carga, al financiero le preocupará el coste, pero al piloto (o al camionero o al capitán del barco) le preocupará (y mucho) la distribución de la carga.

No hace falta ser un genio de la física para darse cuenta de que si un barco cargado al 50% se le pone toda la carga en un lado, escorará. En los aviones, es crítico distribuir los pesos: volar en un avión desequilibrado es peligrosísimo (o directamente imposible). Y, además del peligro, la distribución de la carga nos afectará al consumo. Así que, cuando no estamos al 100%, tenemos un problema de gestión y distribución de la carga.

Un DataCenter es como un barco o un avión: estos últimos transportan cargas, y los datacenters soportan cargas computacionales, con la peculiaridad mencionada de que en raras ocasiones tenemos el datacenter al 100%. Así que en el datacenter tenemos siempre el problema de distribución de la carga. Si, es cierto: debemos gestionar cómo distribuimos la carga en el datacenter. He conocido muchos datacenters en el que los sistemas se instalan de cualquier manera, es decir, en el primer sitio que haya disponible y preferentemente a la altura de los ojos. Distribuir la carga del datacenter afecta a dos cuestiones importantísimas: la primera, la eficiencia. La segunda, más importante todavía: fiabilidad y seguridad. Si, no gestionar la carga, además de hacernos menos eficientes, puede provocar problemas de fiabilidad y seguridad.

¿Cómo controlar esto? En primer lugar, el Performance Indicator (y en especial mantener un ojo en el Thermal Conformance y otro en el Thermal Resilience) es una muy buena herramienta. Como continuación, deberíamos disponer de una herramienta que nos permita relacionar el Performance Indicator y sus tres indicadores con riesgos tal como los define la ISO 27001.

Si queréis ayuda sobre cómo distribuir la carga en el datacenter, o cómo realizar un análisis de la carga existente y sus implicaciones sobre los riesgos, consultad conmigo.

Performance Indicator (VII): Cómo establecer objetivos

El otro día un responsable de un importante datacenter me decía: vale, vale, Antonio, me has convencido: voy a medir el Performance Indicator pero, ¿Qué objetivos pongo? ¿Por dónde empiezo?.

No existe una respuesta universal a esta pregunta, obviamente. Como hemos visto en la serie de artículos, depende de muchos factores: uso del datacenter (no es lo mismo HPC que servicios web, por ejemplo), calidad de servicio que se necesita, riesgos asumibles, etc,etc.

Así que establecer de antemano cuál debe ser el objetivo del Performance Indicator es hacer un brindis al sol. Vale, es obvio que quiero un 100% de PUEr, un 100% de Thermal Conformance y un 100% de Thermal Resilience. Y ya que estamos de cienes, que me toquen otros cien millones en el Euromillones. Puestos a pedir ¿por qué no?

Si, por pedir que no quede, pero si en el Euromillones me toca algo más que el reintegro me suelo dar por contento. Así que empecemos a ser un poco realistas. Fijemos objetivos realistas, y si lo hacemos es cuando verdaderamente podremos obtener beneficios. El primer objetivo es una perogrullada, pero es quizá el más importante: MEDIR.

Yo tengo que adelgazar, este verano me he pasado con la cerveza y la barbacoa (la carne es débil, veo comida y…). Pero ¿cuánto tengo que adelgazar? Antes que nada necesito saber de dónde parto: tendré que pesarme antes de empezar. Luego, en función de mi constitución, mi estatura y mi estilo de vida podré establecer cuánto debo pesar, podré analizar la diferencia y establecer el plan para llegar al objetivo (normalmente es ejercicio y hambre).

Bueno, pues en el datacenter tengo que hacer lo mismo. Lo primero MEDIR. El PUEr depende del PUE, así que tengo que medir éste. Medir bien el PUE (ver los artículos anteriores) tiene su intríngulis, así que hay que hacerlo bien. Una vez que mida el PUE me llevaré la sorpresa de que el PUE instantáneo varía bastante a lo largo del tiempo dependiendo de las condiciones de explotación.

El siguiente paso no tiene dificultad técnica, pero tiene la enjundia de que puede ser necesario instalar muchos sensores en el CPD, y es medir el Thermal Conformance. Eso sí, hay que tener en cuenta que el Thermal Conformance no es el mero mapa de temperaturas, hay que dividir por la parte proporcional de la carga. Así que deberemos saber qué porcentaje de carga en kW hay que asignar a cada sensor de temperatura, y lo suyo es hacer esto con una aplicación que lo haga automáticamente. Si medimos bien el Thermal Conformance es bastante probable que nos llevemos algún susto morrocotudo: a pesar de que en el CPD hace frío, resulta que a algunos sistemas les está entrando el aire mucho más caliente que nuestra consigna. Resulta, además, que es a los servidores críticos a los que les pasa (por aquello de la ley de Murphy). Bueno, pues en este caso el Thermal Conformance te ha proporcionado dos noticias: una buena y una mala. La mala es que tienes sistemas calientes, y la buena es que lo sabes y puedes tomar medidas.

Si al medir el Thermal Conformance te has llevado un susto, es probable que al medir el Thermal Resilience te dé un jamacuco. Recuerda que la carga no es plana, y recuerda que hay que contemplar el peor problema posible del sistema de refrigeración.

Cuando ya tenemos en marcha las tres cosas es bastante normal encontrarnos cosas de este tipo:

  • ¡Uy, al medir el PUE nos ha salido una cifra por encima de 2! ¿no decía el proyecto del CPD que íbamos a tener un PUE de 1,4? Esta frase es muy común. No, el ingeniero que hizo el proyecto no te engañó, calculó que el PUE iba a ser 1,4 en unas condiciones concretas, que normalmente incluyen carga máxima. Es como el consumo de la ficha de los coches: todos sabemos que el consumo que aparece en el folleto no lo conseguimos nunca. No significa que el folleto nos engañe. Simplemente, como hay que normalizar  cómo se mide, se hizo la norma NEDC, que lo que viene a decir en román paladino es en condiciones ideales el consumo de tu coche es x, pero tú ya sabes que las condiciones normales de uso no son las ideales.
  • Tenemos una temperatura de consigna de 24º, el CPD está fresquito y nos ha salido un Thermal Conformance del 70%. Esto es también bastante común. Depende de cómo sea el sistema de refrigeración, obviamente. Pero no es raro que, aunque la temperatura de consigna sea baja, encontrarse que al medir el Thermal Conformance salgan cifras del 70%. En este caso… Houston, tenemos un problema. Hay que analizar por qué y corregir la situación. Además, como hemos dicho antes, tenemos que ver qué hace ese 30% de carga que está fuera de especificaciones. Si es carga crítica, es imperativo hacer algo. Esto forma parte del Performance Indicator y la gestión de riesgos.
  • Resulta que yo creía que estaba sobrado de refrigeración, gasto una barbaridad en máquinas, mantenimiento y electricidad y me sale un Thermal Resilience alarmantemente bajo. Esto también es mucho más común de lo que pensamos. De hecho suele suceder en muchas ocasiones.

Este artículo iba de cómo establecer los objetivos del PI, así que vamos allá:

  1. El primer objetivo y más importante es medir el Performance Indicator. Al hacerlo, aflorarán muchos de los problemas que tenemos en nuestro datacenter y de los que todavía no somos conscientes, y podremos ponerles remedio.
  2. Para el PUEr, un buen compromiso es, precisamente, el mencionado antes. Si la ingeniería que nos ha proyectado el DataCenter ha calculado el PUE, ese debe ser el objetivo de PUE. En el ejemplo que hemos puesto antes, si el objetivo de PUE es 1,4 y el PUE actual es 2, entonces el PUEr es el 70%.
  3. En el Thermal Conformance deberíamos estar por encima del 90%, pero en cualquier caso lo importante es saber qué sistemas son los que tenemos trabajando fuera de especificación y su grado de criticidad. La SAN puede representar un porcentaje minúsculo de la carga del DataCenter, pero si es justo eso lo que tenemos trabajando fuera de rango, igual tenemos que cortarnos las venas pronto (siempre es preferible dejárselas largas)…
  4. El objetivo ideal de Thermal Resilience es, obviamente, del 100%. Pero tenemos que tener claro cuál es el propósito del datacenter, el riesgo asumible, calidad de servicio comprometida, etc. Lo óptimo es que el TC sea igual o superior a la carga crítica.

Esto son líneas muy generales, pero lo que finalmente se establezca dependerá de muchos factores. Acercar el TC y el TR al 100% cuestan mucho dinero, y debemos analizar si merece la pena o no. ¿Hay carga que pueda ser apagada en caso de problemas del sistema de refrigeración? ¿Los sistemas que cuya temperatura está fuera de especificación son críticos? ¿cuál es la calidad de servicio comprometida?

Lo ideal sería que el PI formara parte de un sistema ISO 27001- ISO 20000, en el que controlemos tanto la seguridad como la calidad del servicio. Aunque no lo parezca, el PI es un pilar importantísimo para las dos ISO’s mencionadas: ¿cuáles son los riesgos asociados  a tener un TC y un TR bajos? ¿cómo puede afectar a la calidad del servicio? Así que os recomiendo consultar con expertos estos aspectos para no tener sustos en el futuro: quien haya sufrido un paso por cero sabe de lo que hablo. Así que si tenéis dudas, queréis poner en marcha un Performance Indicator o queréis ayuda para establecer los objetivos, ponedme un correo o llamadme, pero medid, medid, malditos!

 

 

 

Performance Indicator (V): Thermal Resilience

Una vez transcurrido el parón veraniego, volvemos a la carga con la serie de artículos sobre el Performance Indicator. En esta ocasión, hablaremos del tercer indicador: el Thermal Resilience.

Los responsables de sistemas y/o directores de TI saben que, en la mayoría de sus casos, su cuello depende de que los sistemas funcionen: no me cuentes historias, haz que funcione y haz que funcione ya! Por eso muchos tienen una palabra en la cabeza: redundancia. Es evidente que cualquier dispositivo puede fallar, así que hay que tenerlo redundado por si las moscas. Durante la época de las vacas gordas, y más en los ochenta y noventa, en los que la informática era la estrella de la organización, esto no era un problema. Hay directores de sistemas que, como el coche tiene cuatro ruedas, llevan cuatro ruedas de repuesto porque todo debe estar redundado. Ya dedicaremos alguna entrada del blog a redundancia y sus conceptos básicos, pues tiene mucha más enjundia de la que parece y hay bastante gente que no lo tiene claro.

La definición intuitiva del Thermal Resilience es la capacidad para hacer frente a problemas en el sistema de refrigeración, y mucha gente interpreta que esta capacidad es igual a redundancia. Pero (volvemos al concepto de redundancia) el error es pensar que lo único que tenemos que tener en cuenta en nuestra redundancia son los posibles fallos en el sistema de climatización. No, esto no es así. Nuestra resistencia a fallos varía en el tiempo en función de las condiciones de explotación, y esto es lo que mide el Thermal Resilience.

Para simplificar las cosas y entenderlo fácilmente vamos a poner un ejemplo sencillito. Supongamos que tenemos un CPD clásico, con refrigeración por falso suelo, en el que tenemos tres CRAC’s repartidos por la sala. Si cada uno de ellos tiene una capacidad de refrigeración de 50kW, tendremos una capacidad total de 150kW. Si la carga en un momento dado es de 45kW, se tendrá una redundancia N+2: podrán fallar dos CRAC’s y, en teoría, no habrá problemas (en teoría, porque en la práctica depende de cada sala concreta, ver el apartado de Thermal Conformance). Resulta que, en el momento en el que un CRAC había fallado y otro estaba fuera de servicio por revisión, los del departamento financiero (siempre tienen el don de la oportunidad) habían lanzado un proceso de business inteligence con unos cubos OLAP enormes, los sistemas se pusieron a tope y la carga había subido a 75kW. Así que en ese momento puntual tenemos 50kW de capacidad frigorífica para hacer frente a una carga de 75kW, por lo que tendremos problemas sí o sí.

Este ejemplo era muy sencillo. En realidad, el sistema de refrigeración es un mecano complejo y más en la actualidad, en el que es fácil encontrarse simultáneamente CPD’s que disponen de más de un sistema de refrigeración y que cada uno de ellos tenga n componentes. Por ejemplo, por un lado puede haber free cooling directo  y por otro un sistema basado en agua en el que haya enfriadoras de agua en el exterior e intercambiadores de calor en la sala. La capacidad de refrigeración del freecooling directo dependerá de la temperatura exterior, y la del sistema de agua dependerá de si funcionan todas las enfriadoras y todos los intercambiadores.

Por otra parte, lo hemos dicho una y mil veces, la carga es dinámica. Lo es por dos factores, y el primero de ellos es elemental: a lo largo del tiempo instalamos servidores y equipos y los damos de baja. Tenemos nuestro flamante CPD recién construido y estrenamos el sistema de refrigeración, que estará diseñado para tener una determinada redundancia a una determinada carga nominal. Si sólo instalamos un servidor tenemos una redundancia enorme y a medida que vamos instalando servidores la carga aumenta y la capacidad para hacer frente a problemas baja. El segundo factor es menos tenido en cuenta y es que la carga de los sistemas es dinámica, varía (y puede hacerlo mucho) en función de las condiciones de explotación. Los que nos dedicamos a la supercomputación lo sabemos muy bien, el consumo de los servidores prácticamente se triplica cuando ponemos los procesadores a tope. Un clúster HPC de 250 nodos consumirá unos 40kW encendido y con el sistema operativo cargado, pero su consumo se triplicará en cuanto le soltemos un sistema de ecuaciones medianamente puñetero: nuestro consumo habrá subido a 120kW y, si ese clúster está instalado en la hipotética sala que hemos mencionado antes ¡habremos pasado de tener redundancia N+2 en el sistema de refrigeración a no tener redundancia por el simple hecho de lanzar un programa a nuestros servidores!

Esto es, precisamente, lo que mide el Thermal Resilience. En la entrada anterior definimos el Thermal Conformance como el porcentaje de carga al que le está entrando el aire a temperatura correcta. Bueno, pues la definición que hace TGG del Thermal Resilience es el porcentaje de carga al que le entra aire a temperatura admisible en el peor caso de fallo del sistema de refrigeración. Esto requiere definir dos cosas: qué es temperatura admisible y qué es peor caso del sistema de refrigeración:

IT Thermal Resilience = Eq Load (Tinlet < 32º under worst case cooling failure) / Total Eq. Load

Como se ve en la fórmula, el propio TGG propone 32º como temperatura admisible. Pero lo difícil es definir  qué es el peor caso de fallo del sistema de refrigeración. En el ejemplo de antes, en el que había un sistema de refrigeración sencillo con tres CRAC’s, es que fallen dos. De los tres indicadores que forman el PI es el más difícil de calcular, pues hoy en día las configuraciones son complejas, y el concepto peor fallo del sistema de refrigeración puede ser difícil de precisar. Así que, como siempre, si tenéis dudas consultad.

En el próximo artículo hablaremos de la verdadera potencia del PI: cómo los tres indicadores tiran unos de otros, es decir, cómo están relacionados para consigamos en nuestro datacenter el mejor equilibrio entre eficiencia, redundancia y fiabilidad.

 

 

 

 

 

Performance Indicator (IV) – IT Thermal Conformance

Hoy toca hablar del segundo indicador del PI: el Thermal Conformance, es decir, cumplimiento térmico. Pero ¿qué quiere decir cumplimiento térmico?

Los que visitáis con frecuencia CPD’s habéis comprobado que en ellos hace frío. En alguna conferencia hemos contado que una de las razones para que esto sea así es histórica: los viejos mainframes de los setenta y ochenta consumían poco y por tanto el coste de refrigeración era una fracción ínfima respecto al coste de explotación del bicho, así que era necesario crearles una aureola esotérica, y para eso el frío ayuda mucho: el mainframe se encontraba en un altar de condiciones muy especiales, empezando por el frío. Así que, tradicionalmente, en los CPD’s ha hecho excesivo frío. Los sistemas deben estar en el rango de temperatura especificado por el fabricante: no más, pero tampoco es necesario que esté a menos, ya que en este caso ni va a funcionar mejor ni más rápido.

Gracias a que algunos hemos dado mucho la tabarra con este tema, mucha gente se ha dado cuenta de que la temperatura del CPD tiene una influencia decisiva en la Eficiencia Energética. Hace unos años esto importaba un pimiento a la mayoría de la gente: al director de TI lo único que le interesaba es que los sistemas funcionaran, y le daba igual si gastaba mucha electricidad o poca. Normalmente ni se enteraba del coste de la electricidad, pues son otros departamentos los que se ocupan de ellas (¡grave error, querido Watson!).

Sin embargo, ahora esto ya no es así: entre que aprieta la piedra al zapato de la pasta, aprieta la piedra al zapato de la ecología y aprieta la piedra al zapato de la Eficiencia, ya no hay quien de dos pasos sin ver si puede hacer algo para mejorar la Eficiencia y, por tanto, las facturas a pagar por la organización, el medio ambiente, la emisión de CO2, la imagen del departamento… Es más, recuerdo una anécdota personal. En las jornadas del Proyecto de e-Ciencia en Andalucía celebradas en 2007 hablé sobre Eficiencia Energética y TIC… y la audiencia se me dormía. Como me precio de ser un conferenciante capaz de captar la atención de la audiencia, me sorprendió. Así que en la celebración de esas mismas jornadas dos años después hice la misma charla con una pequeña modificación: donde ponía kWh cambié a Kg de CO2. Es decir, averigüé cuánto CO2 había que emitir a la atmósfera para generar un kWh según el mix energético de aquel año. A partir de ahí, hice la misma presentación, pero hablando de toneladas de CO2 emitidas a la atmósfera en vez de kWh que es un concepto aburrido. Como todos llevamos un ecologista dentro, la charla fue un éxito.

No hay que ser un genio para darse cuenta que el coste de refrigeración tiene un impacto enorme en la explotación de un CPD. En el pasado sólo preocupaban las consecuencias de un posible problema en la refrigeración. Pero hoy, además de eso, nos preocupa su coste. En un CPD legacy, puede pegarse un recorte significativo a los gastos de refrigeración a base de buenas prácticas, sin realizar apenas inversiones: distribuir correctamente las cargas, separar zonas frías y calientes y, la más importante de todas, tener una temperatura correcta. Es por eso que muchos responsables de explotación han añadido una palabra a su vocabulario: setpoint. Vamos, algo tan tonto como la temperatura de consigna del sistema de refrigeración, que en el pasado la programó el instalador y nunca se cambió. Ahora hemos aprendido que la podemos cambiar, es más, que la debemos subir y que para eso los fabricantes de los servidores hacen recomendaciones. No sólo los fabricantes, instituciones como ASHRAE hacen recomendaciones sobre cuál debe ser la temperatura de consigna en un CPD.

Pero hay que tener en cuenta un factor muy importante (y aquí vamos al meollo del Thermal Conformance): una cosa es la temperatura de consigna del sistema de refrigeración y otra diferente es la temperatura a la que el aire entra al servidor correspondiente. Es fácil ilustrar este concepto viendo la siguiente foto:

Muchos, en casa o en la oficina, tendréis algo así. Y habréis sufrido las discusiones: el que está sentado en el sofá debajo del split de aire acondicionado se quejará de que tiene exceso de aire frío en el cogote, pero el que está sentado al otro lado de la habitación se quejará de que pasa calor ¿A cuántos os pasa esto mismo en la oficina?. Es decir, yo he programado una temperatura de 24º al aparato, pero esto no quiere decir que consiga que toda la habitación esté uniformemente a 24º.

Bueno, pues en nuestro CPD pasa esto mismo. Pasará en mayor o menor medida en función del tipo de sistema de refrigeración, distribución de las salidas de aire, etc., pero pasará. Así que supongamos que vamos haciendo caso de recomendaciones y ponemos un setpoint de 26º, es decir, lo que queremos es que el aire entre a 26º a nuestros servidores.

Entonces, si lo que queremos es que entre aire a 26º a nuestros servidores ¿lo estamos cumpliendo? O, mejor dicho, ¿en qué medida lo estamos cumpliendo? Esto es, exactamente, el Thermal Conformance: el grado de cumplimiento de la especificación térmica. Vamos a explicarlo fácil: supongamos que tenemos cuatro racks, y que en tres la temperatura del aire de entrada está por debajo del umbral especificado y uno en el que está por encima. Es cierto que en el 75% por ciento de los racks entra el aire a temperatura correcta, pero ¿qué carga representa? Imaginad que en los tres racks en los que la temperatura entra correcta hay pocos servidores y tienen una carga de 1000W cada uno, y en que entra la temperatura incorrecta tenemos un blade con una carga de 7000W. La realidad es que en este hipotético CPD con 10.000W de carga ¡el aire entra a temperatura incorrecta al 70% de la misma! Eso es, exactamente, el Thermal Conformance: el indicador que nos dice a qué porcentaje de carga le está entrando aire a temperatura correcta.

Por cierto, que el ejemplo puesto no es tan descabellado: conozco CPD’s que tenían un montón de servidores legacy, y que en algún momento de la historia han hecho un proyecto de consolidación (¡Bien!) y han sustituido 100 servidores por un flamante blade sobre el que se han virtualizado los servidores. Ese blade, cuando se compró, hubo que instalarlo en el rack que estaba libre, que estaba en un extremo de la sala y al que llega ya poco flujo de aire… Desde el punto de vista funcional, genial. Desde el punto de vista de la eficiencia, también, seguro que han disminuido consumo. Pero han creado un punto caliente que acabará generando problemas de fiabilidad al sistema de refrigeración y al propio blade. Porque, una de las consecuencias del Thermal Conformance, es que hay una correlación entre tasa de averías y temperatura de entrada de aire si esta es excesivamente alta. Por cierto, en este punto una colleja colectiva: cuando se instala un servidor en un rack vacío la tendencia es, por comodidad, instalarlo a la altura de los hombros… pero si el sistema de refrigeración es por impulsión de aire en el falso suelo, poco aire frío llega a la parte superior de los racks.

Como la recomendación de ASHRAE es impulsar entre 18-27º, la estandarización del cálculo del Thermal Conformance que nos hace TGG es:

IT Thermal Conformance = Eq Load (Tinlet < 27º) / Total Eq. Load

Donde Eq Load es la carga en kW de los equipos IT. Es decir, para calcular el Thermal Conformance tenmos que dividir el porcentaje de carga IT a la que le llega la temperatura por debajo de 27º  por el total de carga IT. Como es evidente, necesitamos medir las temperaturas a las que entra el aire en los equipos. La especificación de TGG dice que hay que poner tres sensores por rack: arriba, en medio y abajo.

Intentad hacer un mapa mental de vuestro CPD y pensad ¿cuál sería mi IT Thermal Conformance? Os aseguro que si tenéis un CPD con refrigeración por falso suelo os llevaréis sorpresas desagradables. Imaginad que implantáis un sistema de medida del Thermal Conformance y que el primer número que os sale es malo. Intuitivamente es fácil comprender que si intentáis mejorar el TC a base de fuerza bruta inmediatamente subirá el PUE ¿comprendéis ya por dónde van los tiros del “indicador triple”, es decir, el Performance Indicator? Lo seguiremos viendo en los próximos artículos. Y ya sabéis, si queréis montar un sistema de medida del Thermal Conformance o tenéis alguna duda… consultad conmigo!